TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D

Gaussians Reconstruction

DAHENG YIN, Simon Fraser University, Canada
ISAAC DING, Simon Fraser University, Canada

YILI JIN, McGill University, Canada and Simon Fraser University, Canada
JIANXIN SHI, Nankai University, China and Simon Fraser University, Canada

JIANGCHUAN LIU, Simon Fraser University, Canada

(a) Ground truth frame 61, 64, 67.

Region for gradients

- = 1 P
| Gaussian in | e Move and F

IFrame i nts:

IFrame i
°

|
|
|
|
|
|
|
| | |
o RN _ o B R —
Ground-truth pixels in Frame i+1

(e) Gaussian fits for slow motion.

(f) Gaussian fades for fast motion.

(d) Frame 67 by our method.

Gaussian in
Frame i

o Fit
1)] o o
L o
Ground-truth °

pixels in Frame i+1

(g) Basic idea of TrackerSplat

Fig. 1. lllustration of the motivation and basic idea of TrackerSplat. (a) Ground truth from the "walking" sequence. (b), (c) Rendered frames 64 and 67, trained
1000 iterations from frame 61 with the physically-based regularization losses introduced by Dynamic3DGS [Luiten et al. 2024]. Gaussians struggle to accurately
follow the fast moving object, resulting in fading or incorrect recoloring. (e) Slow motion: object remains in the region for gradient computing, allowing
Gaussians to maintain consistent color and follow the movement of object. (f) Fast motion: the object moves outside the region for gradient computing,
position gradients fail to align with the movement of object, causing Gaussians to either fade or incorrectly recolor. (d), (g) TrackerSplat to adjust Gaussian
position, rotation and scaling parameters according to point tracking results before training, enabling stable and robust training for fast-moving objects.

Recent advancements in 3D Gaussian Splatting (3DGS) have demonstrated
its potential for efficient and photorealistic 3D reconstructions. However,
current Gaussian-based methods for dynamic scene reconstruction strug-
gle with large inter-frame displacements, leading to artifacts and temporal

Authors’ Contact Information: Daheng Yin, Simon Fraser University, Burnaby, Canada,
dya64@sfu.ca; Isaac Ding, Simon Fraser University, Burnaby, Canada, isaac_ding@
sfu.ca; Yili Jin, McGill University, Montreal, Canada and Simon Fraser University,
Burnaby, Canada, yili.jin@mail.megill.ca; Jianxin Shi, Nankai University, Tianjin, China
and Simon Fraser University, Burnaby, Canada, jxshi@nankai.edu.cn; Jiangchuan Liu,
Simon Fraser University, Burnaby, Canada, jcliu@cs.sfu.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers °25, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2137-3/2025/12

https://doi.org/10.1145/3757377.3763829

inconsistencies under fast object motions. To address this, we introduce
TrackerSplat, a novel method that integrates advanced point tracking meth-
ods to enhance the robustness and scalability of 3DGS for dynamic scene
reconstruction. TrackerSplat utilizes off-the-shelf point tracking models to
extract pixel trajectories and triangulate per-view pixel trajectories onto
3D Gaussians to guide the relocation, rotation, and scaling of Gaussians be-
fore training. This strategy effectively handles large displacements between
frames, dramatically reducing the fading and recoloring artifacts prevalent in
prior methods. By accurately positioning Gaussians prior to gradient-based
optimization, TrackerSplat overcomes the quality degradation associated
with large frame gaps when processing multiple adjacent frames in parallel
across multiple devices, thereby boosting reconstruction throughput while
preserving rendering quality. Experiments on real-world datasets confirm
the robustness of TrackerSplat in challenging scenarios with significant
displacements, achieving superior throughput under parallel settings and
maintaining visual quality compared to baselines. The code is available at
https://github.com/yindaheng98/TrackerSplat.

CCS Concepts: - Computing methodologies — Rendering; Image-based
rendering; Point-based models; Motion capture.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

https://orcid.org/0000-0002-9431-4240
https://orcid.org/0009-0004-1117-3860
https://orcid.org/0000-0002-7127-8902
https://orcid.org/0000-0002-7687-8480
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-9431-4240
https://orcid.org/0009-0004-1117-3860
https://orcid.org/0000-0002-7127-8902
https://orcid.org/0000-0002-7687-8480
https://orcid.org/0000-0001-6592-1984
https://doi.org/10.1145/3757377.3763829
https://github.com/yindaheng98/TrackerSplat

2« Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu

Additional Key Words and Phrases: Point Tracking, 3D Gaussian Splatting

ACM Reference Format:

Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu. 2025.
TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D
Gaussians Reconstruction. In SIGGRAPH Asia 2025 Conference Papers (SA
Conference Papers °25), December 15-18, 2025, Hong Kong, Hong Kong. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3757377.3763829

1 Introduction

Reconstructing dynamic 3D scenes and generating photo-realistic,
temporally consistent renderings have long been fundamental goals
in computer vision and graphics. These capabilities are increas-
ingly important for creating controllable, editable, high-quality 3D
content, underpinning applications in film, gaming, and the meta-
verse [Zhang et al. 2021]. Beyond visual fidelity for human audiences,
accurately modeling the dynamic 3D environments, including track-
ing the positions and actions of objects in the scene, also plays a
critical role in transformative applications such as robotics [Abou-
Chakra et al. 2024], autonomous driving [Zhou et al. 2024]. Despite
significant recent advances, efficient and accurate reconstruction
of dynamic scenes remains challenging due to the complexities
introduced by temporal dynamics and diverse motion patterns.

Recent progress in 3D reconstruction has been driven notably by
the success of 3D Gaussian Splatting (3DGS)[Kerbl et al. 2023] for its
ability to efficiently represent 3D scenes with photorealism. By mod-
eling 3D space with ellipsoids (“Gaussians”), 3DGS enables intuitive
editing through manipulation of individual Gaussians, making it
suitable for dynamic scene representation. Building on its strengths,
recent research has adapted 3DGS to dynamic scenarios by explic-
itly encoding Gaussian parameters as temporal trajectories [Li et al.
2024a; Lin et al. 2024] or by representing motion fields using implicit
features [Li et al. 2024b; Wu et al. 2024]. This methods typically
rely on frame-to-frame adaptation, iteratively refining Gaussian
parameters by training on consecutive frames to ensure smooth
temporal transitions [Gao et al. 2024; Luiten et al. 2024; Sun et al.
2024].

Despite these advancements, the reconstruction process of 3DGS
is computationally intensive, limiting its application in scenarios
demanding both high quality and high throughput, such as live
streaming and interactive virtual environments. To improve the
throughput of reconstruction without adding end-to-end latency, a
natural solution is to process multiple adjacent frames in parallel
across multiple GPUs. However, our experiments reveal that existing
methods suffer from significant quality degradation when handling
large displacements between frames, leading to visible artifacts, as
is shown in Figure 1b and Figure 1c.

Upon further analysis, we identify a critical issue in 3DGS that
contributes to this quality degradation. Existing approaches rely
heavily on fine-tuning Gaussian parameters from frame to frame
using iterative training. A core idea behind these methods is to
guide Gaussian motion using position gradients computed by com-
paring Gaussian colors with the surrounding pixels they overlap
(Figure 1e). Due to computational constraints, gradient computa-
tions are restricted to a limited local neighborhood. This constraint
results in inaccurate position gradients when objects experience

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

significant inter-frame motion and move outside this restricted re-
gion (Figure 1f). In parallel setups, increased parallelism widens the
frame gaps assigned to each device, amplifying the likelihood of
significant object displacements and consequently exacerbating this
issue, leading to prominent artifacts (Figure 1c).

To mitigate this limitation, we propose directly estimating Gauss-
ian trajectories across frames rather than relying solely on the gra-
dient to update their positions. Recent advancements in point track-
ing [Karaev et al. 2024, 2025] provide robust pixel-level motion
estimation across video frames. However, integrating point tracking
presents two key challenges: (1) translating 2D pixel trajectories into
updates for 3D Gaussian parameters, and (2) mitigating inaccuracies
in pixel trajectories to prevent error accumulation during updates.

We introduce TrackerSplat to address these challenges. As illus-
trated in Figure 1g, TrackerSplat integrates an off-the-shelf point
tracking model to capture pixel trajectories for each viewpoint. To
compute updates for 3D Gaussians, we propose Parallel Weighted
Incremental Least Squares (PWI-LS) that derives 2D motion from
pixel trajectories. These 2D motions from multiple views are tri-
angulated to update Gaussian positions, rotations, and scales. To
reduce inaccuracies, the computed updates are smoothed by Mo-
tion Regularization, and Gaussian parameters are further refined
through training. By repositioning Gaussians closer to their correct
locations before training, TrackerSplat maintains coherent track-
ing despite large displacements, significantly reducing fading or
recoloring artifacts observed in prior methods. Most importantly,
since tracking mitigates the impact of large frame gaps, Tracker-
Splat enables independent frame updates across multiple GPUs, thus
increasing reconstruction throughput without sacrificing quality.

To the best of our knowledge, we are the first to identify the
robustness limitations of 3DGS in handling large inter-frame dis-
placements, and TrackerSplat is the first method to directly compute
Gaussian trajectories using multi-view point tracking results to ad-
dress this limitation. While prior works have incorporated tracking
within Gaussian-based pipelines [Lei et al. 2025; Stearns et al. 2024],
direct use of multi-view point tracking for trajectory estimation
remains unexplored.

We implement TrackerSplat with a parallel pipeline across 8 GPUs
and evaluate it on real-world dynamic scene datasets. Our exten-
sive experiments demonstrate superior throughput under parallel
settings, while preserving or improving visual quality compared to
baselines. Our findings confirm the effectiveness of incorporating
point tracking into 3DGS-based dynamic reconstruction, paving the
way for scalable, accurate, and temporally consistent dynamic 3D
scene reconstructions.

2 Related Work
2.1 3D Gaussian Splatting for Dynamic Scenes

Recent years have witnessed significant progress in reconstruct-
ing 3D representations from multi-view captures. Among these
advancements, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] has
emerged as a leading approach. 3DGS represents scenes using a
set of ellipsoids ("Gaussians") and achieves photorealistic rendering
with high efficiency. Building on its success, recent studies have ex-
tended 3DGS to dynamic scenarios. Some methods dynamically add

https://doi.org/10.1145/3757377.3763829

TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D Gaussians Reconstruction « 3

or remove Gaussians to represent motion through their appearance
and disappearance [Duan et al. 2024; Sun et al. 2024]. However, this
approach may lead to significant storage overhead due to the large
number of Gaussians needed to capture the dynamic nature of the
scene. To address this, other methods explicitly represent dynamic
scenes using Gaussians and their trajectories, significantly reducing
the number of Gaussians. For instance, some approaches use implicit
features conditioned on time to represent motion fields [Gao et al.
2024; Li et al. 2024b,a; Lin et al. 2024; Luiten et al. 2024; Wu et al.
2024], while others adopt triplane representations for higher spatial
and temporal resolutions [Wu et al. 2024]. Recent advancements
also include frame-to-frame adaptation techniques, where Gauss-
ian parameters are iteratively refined by training on consecutive
frames [Gao et al. 2024; Luiten et al. 2024; Xu et al. 2024].

2.2 Point Tracking

Point tracking [Seidenschwarz et al. 2025; Wang et al. 2023] iden-
tifies the position and visibility of specific pixels across video se-
quences (Figure 2), providing robust trajectory estimation even
under challenging conditions such as occlusion. Recently, point
tracking has attracted considerable attention within the computer
vision community. Empowered by semi-supervised correspondence,
CoTracker [Karaev et al. 2024, 2025] achieves state-of-the-art sparse
tracking performance, while DOT [Le Moing et al. 2024] further
enhances dense tracking accuracy and efficiency. Point tracking
has been used in 3D reconstruction, especially for reconstructing
dynamic scenes from monocular videos [Lei et al. 2025; Stearns
et al. 2024]. In these methods, point tracking typically separates
static background from dynamic foreground or serves as a regular-
ization term for dynamic regions. However, the direct application
of point tracker results to compute 3D Gaussian splatting parame-
ters for multi-view dynamic scene reconstruction remains largely
unexplored.

] |

Fig. 2. DOT point tracking on a video sequence. Colored lines show pixel
trajectories over time.

3 Preliminaries
3.1 Mathamatical Reperesentation of 3D Gaussians

3DGS represents the scenes with 3D Gaussians. Each 3D Gaussians is
characterized by two key components: its mean psp represents the
position of the ellipsoid, and its covariance matrix X3p = RSSTRT,
composed of a scaling matrix S and a rotation matrix R, describes
the spread and orientation of the Gaussian ellipsoid respectively.
When projected onto the 2D image plane, the 3D Gaussian be-
comes a 2D Gaussian distribution. Concretely, for a point on the

image plane, the density function of the 2D Gaussian distribution
can be represented as:

G(x) = e—%(X—ﬂzD)TZEE(X—ﬂzD)

Sop = JWEspW T 1)
1

Hop = ;PWPSD

where] is the Jacobian of the affine approximation of the projec-
tive transformation, W is the viewport transformation matrix, P is
the projection transformation matrix, and z is the depth value in
PW psp. After projection, the color of each pixel is calculated by
alpha-blending each Gaussian according to its depth.

3.2 Integration of Point Tracking

To track 3D Gaussians, we rely on point tracking in video frames
captured from multiple viewpoints. In particular, we employ Dense
Optical Tracking (DOT) [Le Moing et al. 2024], a simple yet efficient
method for point tracking. For each pixel i located at position x; in
the first frame, point tracking estimates its corresponding position
(x; = x}) in any subsequent target frame.

4 Method
4.1 Overview

We provide an overview of TrackerSplat in Figure 3. Our goal is to
reconstruct dynamic scenes from video clips captured from mul-
tiple fixed viewpoints by tracking and refining a set of Gaussian
representations. Our methods can be divided into four stages:
Initialization. For the first frame, we initialize 3D Gaussians us-
ing existing reconstruction methods for static scenes, such as In-
stantSplat [Fan et al. 2024].
Point Tracking. For each subsequent frame, we employ a point
tracking model to extract 2D trajectories for every pixel in the initial
frame throughout the video clip.
Motion Compensation. In this stage, we compute the updated
parameters of the 3D Gaussians based on the point tracking results.
TrackerSplat first solves the Gaussian motions (Sec. 4.2) on the
2D image plane using Parallel Weighted Incremental Least Squares
(PWI-LS) (Sec. 4.3) and then updates Gaussians from multi-view
observations (Sec.4.4). To mitigate the impact of errors from point
tracking and PWI-LS on quality, we introduce Motion Regularization
(Sec. 4.5), which applies median filtering and propagates motion
information according to neighboring Gaussians.
Refinement. Finally, we refine the parameters of each frame by
training on the input video clips (Sec. 4.6).

In this section, we detail each step of the proposed approach and
show how they can be parallelized on multi-GPU devices with our
Parallel Pipeline (Sec. 4.7).

4.2 Definition of Gaussian Motion

To serve as the basis for tracking 3D Gaussians across multiple video
viewpoints, it is necessary to define the motion of a 2D Gaussian
distribution on the image plane. Consider a 2D Gaussian distribution
G(x) on a specific image plane in the first frame, characterized by
its covariance ¥;p and mean pyp. We define the motion of this
Gaussian as an affine transformation [A|b], which maps G(x) to a

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

4« Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu
Input Video Clips Initialization Motion Compensation Refinement
—_————————— e —— — — (T T TR L s e
. I) — Sec. 4.6
Vlgwl » | Reconstruct frame 1 y : il lﬁm](&w " 4)| —»ﬁi —
Frame i Dense recon. H Train S 1Gaussia T Il l\ Traln =4 "1
1 W) DUETROGMIY - -- TR M— ————————~"~~"~"7"7~ : I?, ~ A = Frame 2
= % i 43
Frame __ponTcing____ [G G oy 4 oo UL
2 | Track frame 1~n I Vlw,l “ ‘f‘f H_ \/lew ' B
[DOT] L — /' Frame 3
: : S IR B | -
Frame 1n PTFFT=] \ [Pixel Trajectory [Reglil)arlze] Reglil)yarize] - }
‘ & ‘ﬁ" P A
n -+ WM L A ey T | [i C £
= Rles EEsbd E J R el Frame n
View 1 V1ew m } v Frame 2 \‘M?éﬁl“g n]

Fig. 3. TrackerSplat overview. Our method processes video clips captured from multiple fixed viewpoints. It begins by applying existing reconstruction
techniques to initialize a set of 3D Gaussians for the first frame. For subsequent frames, the position, rotation, and scale of these Gaussians are updated
based on point tracking across views, with their motions regularized by neighboring Gaussians. Finally, the Gaussian parameters of each frame are refined by

training on input frames.

new 2D Gaussian distribution G’ (x) in a subsequent frame. Formally,
G(x) = G’ (Ax + b). Under this affine transformation, the updated
mean g, and covariance X, can be derived as follows:

Shp = ASopAT

@
P;D =App +b

4.3 Parallel Weighted Incremental Least Squares (PWI-LS)

4.3.1 Problem Formulation. Let {x;},i € [1,n] denote the collec-
tion of pixels on a specific image plane covered by the 2D Gaussian
in the first frame. Our goal is to find the affine transformation [A|b]
that best aligns these pixel coordinates x; with their tracked posi-
tions x; in the subsequent frame. This can be formulated as follows:

n
minz [|Ax; + b — x/||?
Ab S

4.3.2 Naive Least Squares. A straightforward method to solve this
optimization is through least squares. By stacking all point pairs
(x; = x}) into matrices X and Y, the affine transformation [A|b]
can be computed as:

[Ap] = (X™X)"'XTY

X = X1 Xj Xn T 3)
|1 1 1

Y = [x{ xlf x;l]—r

However, in cases where many pixels fall under each Gaussian
and when multiple Gaussians overlap, explicitly constructing and
inverting these large matrices per Gaussian is computationally ex-
pensive. This motivates a more efficient, incremental approach.

4.3.3 Incremental Least Squares. To mitigate high computational
costs, we exploit the additive structure of X' X and XY in Equa-
tion 3 and decompose them into per-pixel contributions:

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

n n
Ty _ L Xi| 1,7
XX_ZPI_Z[I] [x],1]
i=1 i=1
n n X
XTYZZQiZZ[ll]'xlfT
i=1 i=1

By expressing the solution as sums of P; and Q;, the contribu-
tion of each pixel can be handled independently. This incremental
scheme avoids building full matrices for all pixels, allowing us to
accumulate partial results P; and Q; in parallel, paving the way for
efficient parallel implementations.

4.3.4 Weighted Least Squares. In regions of partial coverage (e.g.,
object boundaries with overlapping foreground/background Gaus-
sians), unweighted alignment can be misled by pixels that do not
truly belong to a particular motion. For example, consider a static
background Gaussian and a high-density moving Gaussian in front
of it. The moving Gaussian may partially cover a moving pixel with
very high opacity, and a static pixel with very low opacity. In this
situation, the static pixel should not contribute to the motion of the
moving Gaussian. To achieve this, we adopt a weighted formulation:

[AlB] = Vi 'V,

W = ZWiPi Va = ZWiQi
i=1 i=1

where each pixel carries a weight w; representing the likelihood
that its motion corresponds to a particular Gaussian. In our imple-
mentation, w; is set to «;T;, where a; and T; are the opacity and
the transparency of Gaussian at the pixel i in alpha-blending. This
ensures that boundary pixels with low opacity contribute less to
the accumulated statistics, thereby reducing sensitivity to irrelevant
motions from overlapping regions.

©

4.3.5 Acceleration by GPU. The Weighted Incremental Least Squares
algorithm can be optimized for GPU execution to exploit its parallel

processing capabilities for acceleration, which results in the Parallel

Weighted Incremental Least Squares algorithm:

TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D Gaussians Reconstruction « 5

For each Gaussian, we allocate GPU memory for the (3x3) matrix
V1 and the (3 X 2) matrix Vo. We modify the rendering process
to compute Vi and V, where the w;P; and w;Q; are computed in
parallel and aggregated by atomic addition into the corresponding
V1 and V5. After processing all pixels, the motion [Alb] of each
Gaussian are computed by Equation 4 to obtain affine transformation
[A|b] of each Gaussian. To avoid numerical instability, we discard
the motion of Gaussians that cover fewer than three pixels, or have
a near-singular matrix Vj.

4.4 Update Gaussians from Multi-view Observations

Once we have motion [A]b] of each Gaussian in multiple views,
we can compute its updated covariance matrix %}) and 2D mean
5, according to Equation 2, and then the updated 3D covariance
matrix 7, and 3D mean p) can be derived from the multi-view
2D means and covariance.

4.4.1 Compute 3D Mean. Determining the 3D mean g, from the
2D means p1;,y across multiple views is a typical triangulation prob-
lem. With known camera intrinsic and extrinsic, at least two view-
points are required to compute the p; -, of a Gaussian. We solve this
triangulation problem using Singular Value Decomposition (SVD).
To maintain numerical stability, results are discarded for Gaussians
observed in fewer than three views or those with low accumulated
alpha values.

4.4.2 Compute 3D Covariance Matrix. Given the covariance matri-
ces 2, from multiple views and the parameters] and W of these
views, the relationship /) = JWS, ;W T JT in Equation 1 yields a
linear system in 2’3 p- Each 2’2 contributes three constraints, while
Zg D has six unknown parameters. Hence, at least two distinct views
are required to solve for 27 .

4.4.3 Decompose Covariance into Rotation and Scale. According
to Equation 1, the 3D covariance matrix Y3p comprises a rotation
matrix R and a scaling matrix S. To update these parameters, we
perform eigen decomposition on the modified covariance matrix
¥ s extracting the updated rotation matrix R’ and scaling matrix
S’. In eigen decomposition, the eigenvector matrix corresponds to
the rotation matrix, while the eigenvalues represent the squared
scaling matrix.

However, naively using eigen decomposition can lead to two
problems: 1) Negative eigenvalues cannot be square-rooted, making
them unsuitable for computing the scaling matrix. 2) Eigenvalues
are sorted from largest to smallest, which can disrupt the consistent
order of rotation vectors and scaling factors between frames. This
inconsistency can cause adjacent regions to appear to have simi-
lar relative rotations but significantly different rotation matrices,
leading to instability in subsequent motion propagation.

To resolve these issues, we discard those Zg 1 With negative eigen-
values, and reorder the eigenvalues and corresponding eigenvectors
to ensure their magnitudes match the order from the first frame.

4.5 Motion Regularization

Pixel tracking and partial observations can introduce outlier Gaus-
sians or wrong motions, leading to noticeable deviations. We intro-
duce a motion regularization to address these issues. Specifically, we

apply median filtering based on K-nearest neighbors to smooth the
motion and then propagate the motion to the neighbor Gaussians
that are not determined to be static.

4.5.1 Median Filtering. We observe that the majority of Gaussians
are stable but a few are outliers. This situation is similar to salt-and-
pepper noise in image processing. Therefore, we heuristically apply
a median filtering approach. Take Ausp =y}, — p3p, AR =R’ =R,
and AS = S’ — S as the difference of a Gaussian between its first
frame. For each Gaussian, we find its K nearest neighbors in 3D
space, and then compute the median of their Apsp, AR, and AS and
add these median values to the Gaussian parameters for the update.

4.5.2 Propagation. The motion of certain Gaussians may not be
reliably determined, for example, due to low visibility (e.g., low
opacity or visible in too few views) or negative eigenvalues arising
from eigen decomposition. For these Gaussians, we apply the mo-
tion propagation that propagates the motion from their neighbor
to them. Before propagation, we first figure out those static Gaus-
sians by checking whether the pixels they cover are moving or not.
Specifically, we treat the pixels with the movement |x] —x;| given by
the point tracking model as less than 1 pixel as static pixels, count
them, and accumulate their alpha for each Gaussian in the rendering
process. The rule for detecting the static Gaussians can be varied.
In this paper, we take those Gaussians hit by more than 9 pixels
and have more than 90% of its pixels fixed in at least 2 views as
static Gaussians, discard their computed motion, and exclude them
from the motion propagation. We then compute the average of their
Apsp, AS and an average of rotations AR in Euler angle form and
add these median values to the Gaussian parameters ysp, S and R.

4.6 Refinement

Even with point tracking and multi-view constraints, errors may
persist in the recovered Gaussians. We hence run a final refine-
ment step by training the Gaussian parameters with the input video
frames. As the Gaussians have been moved to an approximately
right position, the training process would be very fast and stable.

4.7 Parallel Pipeline

Point Tracking Motion Compensation ~ Refinement

GPU O View 1 Frame 1~n Frame 2 View 1~m - Frame 2

GPU 1 View 2 Frame 1~n Frame 3 View 1~m - Frame 3

View m Frame 1~n Frame n View 1~m - Frame n

Fig. 4. TrackerSplat parallel pipeline.

As illustrated in Figure 4, three key stages of TrackerSplat can be
executed in parallel. Since our point tracking operates per video clip,
the point tracking can be parallelized by processing video from each
view independently. Additionally, the Motion Compensation and
Refinement are both per-frame operations, they can be parallelized
by processing each frame independently, only depending on the

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

6 + Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu

results of Point Tracking and initialization of the first frame. The
parallel pipeline can be implemented on multi-GPU systems and
significantly improve the throughput of TrackerSplat.

5 Experiments
5.1 Datasets

We evaluate our method on four widely-used dynamic scene datasets:
Meeting Room dataset [Li et al. 2022a] includes 4 scenes, each of
300 frames captured from 13 viewpoints at a resolution of 1280x720.
Neural 3D Video Synthesis (N3DV) dataset [Li et al. 2022b]
contains 6 scenes, each of 300 frames captured from 18 views at
27042028 resolution.
Dynamic3DGS dataset [Luiten et al. 2024] comprise 6 scenes (150
frames each) captured from 27 views at 640x360 resolution.
st-nerf dataset [Zhang et al. 2021] consists of 3 scenes, each contains
75-100 frames from 15 views at 1920x1080 resolution.

We use these datasets in two experiment setups:
Short-clip experiments: Videos are segmented into non-overlapping
clips of 2, 3, 5, or 9 frames. The first frame of each clip is recon-
structed in the initialization stage, and subsequent frames are pro-
cessed in parallel using 1, 2, 4, or 8 GPUs, respectively. This setup
evaluates quality degradation caused solely by increased parallelism
without cumulative errors across clips.
Long-video experiments: Clips are sequentially connected, with
the last frame of each clip serving as the first frame of the next. Only
the first frame of the first clip is reconstructed in the initialization
stage. This setup evaluates robustness and temporal consistency
over longer sequences.

5.2 Implementation Details

We carefully evaluated various hyperparameter settings and selected
those achieving the best balance between quality and efficiency.
Initialization. Following InstantSplat [Fan et al. 2024], we initial-
ize Gaussians from COLMAP point clouds and optimize Gaussian
parameters for 10,000 iterations, providing a stable starting point
for subsequent frames.

Point Tracking. We evaluated DOT [Le Moing et al. 2024], Co-
Tracker [Karaev et al. 2024, 2025], and TAPIR [Doersch et al. 2023].
TAPIR exhibited significant trajectory errors on the st-nerf dataset,
while CoTracker3 achieved high accuracy but was prohibitively slow
for dense tracking (<0.1FPS for 1080p). DOT, which integrates sparse
tracking from CoTracker3 with RAFT-based optical flow, provided
similar accuracy at much higher speed and was therefore selected.
To improve efficiency, input images are resized (Meeting Room &
Dynamic3DGS: 640x360, N3DV: 800x600, st-nerf: 960x540).
Regularization. Gaussians are marked unsolvable in PWI-LS if
their V; determinant is below 10712, their accumulated alpha is
below 1073, or they cover fewer than 2 pixels. Gaussians are marked
unsolvable during multi-view updates if visible in fewer than 2 views,
accumulated alpha is below 1073, or covering fewer than 3 pixels
across all views. In the regularization stage, parameters of unsolvable
Gaussians are updated based on their 8 nearest neighbors.
Refinement. In the refinement stage, Gaussian parameters are
optimized following the original 3DGS method [Kerbl et al. 2023]
for 1,000 iterations without densification.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Runtime. Our implementation is built on PyTorch, Taichi [Hu et al.
2019], and CUDA. All experiments were conducted on a server with
8 NVIDIA A100-SXM4-40GB GPUs.

5.3 Baseline and Ablation

We compare TrackerSplat with representative dynamic scene re-
construction methods that support Gaussian trajectory tracking
from multi-view videos with fixed camera poses. The original im-
plementations of these methods do not directly support multi-GPU
parallel processing. Thus, to ensure a fair comparison, we carefully
copy and adapt their codebases to our parallel framework, strictly
preserving their original designs and hyperparameters to minimize
any deviation from their original implementations:
Parallel HiCoM. Hierarchical Coherent Motion (HiCoM) [Gao et al.
2024] associates Gaussian motions with distinct regions. In their
open-source code, HiCoM is implemented as a hierarchical grid
with multiple density levels. We copy and adapt this HiCoM grid
implementation to our parallel framework.
Parallel Dynamic 3DGS. Dynamic 3DGS [Luiten et al. 2024] se-
quentially train Gaussian parameters frame-by-frame with physics-
based regularization. We copy their regularization term and adapt
their sequential training to parallel processing by initializing the
training from the first frame of each clip rather than previous frame.
Parallel 4ADGS. 4DGS [Wu et al. 2024] introduces a deformation field
to represent Gaussian motion. We copy and adapt the deformation
field implementation for parallel processing by training a separate
deformation field per frame, warping Gaussians from the initial
frame to subsequent frames within each clip.
Parallel ST-4DGS. ST-4DGS [Li et al. 2024b] extends 4DGS by incor-
porating explicit temporal regularization. We copy and adapt their
regularization term to our framework with 4DGS implementation.
TrackerSplat without regularization (Ablation). As an ablation
study, we remove the regularization stage and directly trained the
Gaussian parameters based on the motion compensation results.
We observed that the regularization in ST-4DGS, 4DGS, and Dy-
namic 3DGS, originally tuned for small motions, tends to over-
constrain Gaussians in our parallel setting, producing severe arti-
facts (e.g., sticking and fading) that obscure the true performance
of these baselines. To ensure a fair comparison, we reduce their
regularization weights, which significantly alleviates these artifacts.
HiCoM is less affected because its regularization is weaker and
more localized. Moreover, since our refinement stage is essentially
training without regularization, including HiCoM in our evaluation
highlights that the robustness of TrackerSplat is not solely due to the
absence of regularization during refinement. All baselines share the
same initial frame for both short-clip and long-video experiments.

5.4 Comparison of Visual Quality

We evaluate rendering quality using three widely accepted metrics:
structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and
perceptual similarity (LPIPS) [Zhang et al. 2018].

Visual quality in short clips: Table 1 presents quantitative re-
sults from short-clip experiments under different GPU parallelism

TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D Gaussians Reconstruction « 7

Table 1. Quantitative comparison of average visual quality (PSNR T/ SSIM T/ LPIPs |) in short-clip experiments under varying GPU parallelism settings (1, 2,
4, and 8 GPUs). Our method achieves better visual quality in most cases and demonstrates greater robustness than baselines as parallelism increases. Results
for all other scenes are included in the supplementary material.

stepin

“vrheadset”

“tackwondo”

“coffee martini”

30.6/.885/.104
32.6/.950 /.068
32.4/.948/.070
32.9/.951/.067

32.9/.952/.065

32.4/.950 /.067
32.5/.951/.066
32.4/.951/.067
32.9/.953/.064

33.0/.954/.063

36.0 /976 / .022
36.3/.977 / 022
36.6 /.978 / .021
36.9/.979/.020
36.8 /.978 / .020

27.6/.918/.114
27.5/.917 / .115
27.6 /917 / .115
28.0/.917/ 116
27.9/ 917/ 115

32.1/.947/.071
32.6/.950 / .068
32.2/.947 / 072
32.8 /.951/.068
32.9/.953/.065

32.2/.950/.067
32.4/.950/.066
32.0/.950/.067
32.8/.953/ 065
33.0/.954/.062

35.0/.971/.027
35.5/.974 / 024
36.4/.977 /.023
36.7/.978 / 021
36.8/.977/.021

27.6/.920/.110
27.4/.918 /.13
27.6/.918 /.13
28.0/.919/.113
27.9/.919/ 112

31.9/.946 / .074
32.6 /.950 / 068
31.7 /.945/ .075
32.6/.950 / .070
32.8/.952/.066

31.9/.949 /.068
32.0/.949/.068
31.5/.948 /.070
32.6/.952/.066

32.9/.954/.063

28.4/.778/ .172
34.8/.972/.028
35.8/.975/.026
36.4/.977/.022

36.7 / .977 / .021

27.5/.919/.111
27.4/.917 / 114
27.6/.918 / 114
28.0/.919/.114
27.9/.919/.112

Method GPUs ‘ “basketball” “boxes” “juggle”

P. ST-4DGS 1 30.6/.941/.074 30.4/.946/.064 30.9/.950/.062
P. 4DGS 1 30.5/.940/.072 30.6/.948/.064 30.8/.951/.063
P.Dy3DGS 1 | 30.9/.942/.075 31.5/.951/.061 31.7/.953/.061
P. HiCoM 1 | 314/.943/.074 31.6/.949/.065 31.9/.951/.063
Ours 1 32.6/.950/.066 32.4/.953/.060 32.6/.956/.058
P. ST-4DGS 2 30.2/.936/.081 30.4/.944/.066 31.0/.951/.063
P. 4DGS 2 30.7/.940 /.073 30.2/.941/.068 30.6/.947 / .066
P. Dy.3DGS 2 30.2/.936/.083 31.3/.949/.063 31.4/.951/.064
P. HiCoM 2 | 31.0/.940/.080 31.6/.948/.066 31.9/.951/.065
Ours 2 32.6/.950/.067 32.2/.953/.061 32.7/.956/.059
P. ST-4DGS 4 29.7/.932/.089 30.2/.943/.069 31.0/.949/.066
P. 4DGS 4 30.0/.932/.082 30.1/.944/.068 30.9/.950/.066
P. Dy.3DGS 4 29.1/.927/.096 30.8/.946/.068 30.8/.946/.071
P. HiCoM 4 | 304/.93/.088 31.4/.946/.069 31.6/.949/.068
Ours 4 32.4/.948/.070 32.4/.953/.062 32.6/.955/.060
P. ST-4DGS 8 29.1/.924/.099 30.0/.941/.073 30.6/.947 / .069
P. 4DGS 8 29.6/.928/.091 29.7/.937/.076 30.2/.940/.071
P. Dy.3DGS 8 27.7/.915/.117 30.1/.942/.074 29.7/.938/.082
P. HiCoM 8 | 29.6/.928/.102 31.0/.943/.074 31.3/.945/.075
Ours 8 31.9/.944/.076 31.9/.951/.064 32.5/.954/.062

30.1/.883/.108
32.4/.949/ 069
31.2/.943/.079
32.2/.948 / .075

32.7/.952/.067

31.6/.947 / .071
31.6/.947 / .070
30.8/.945/.073
32.1/.950 / 069
32.7 /.953/.064

33.7/.968 / .033
33.8/.966 / .035
35.0/.971/.032
36.0 /975 / .026
36.5/.976 / .022

27.4/.916 /113
27.3/.916/ .15
27.5/.917 / 115
28.0/.918/.115
27.9/.919 /.112

settings. In most cases, our method outperforms baselines in vi-
sual quality on single GPUs and maintains higher quality as par-
allelism increases. This demonstrates robustness of TrackerSplat
across different parallelism settings. In scenes with slow motion (e.g.,
"coffee martini"), baselines experience minor quality drops (around
0.1 PSNR), and achieve performance comparable to ours. Figure 6
provides visual comparisons, illustrating that baselines often suf-
fer from fading or drifting artifacts in fast-moving regions, while
our method better preserves visual fidelity, even in highly dynamic
scenes. This demonstrates that explicit motion compensation prior
to training effectively mitigates the impact of large displacements,
maintaining high quality across different levels of parallelism.
Visual quality in long videos: Figure 5 shows quantitative results
over long sequences. Our method achieves higher and more stable
visual quality compared to baselines in most cases. Sample rendered
videos are provided in the supplementary material.

5.5 Ablation Study Results

Figure 5 compares TrackerSplat with and without motion regular-
ization. Motion regularization generally improves robustness but
can slightly reduce quality in certain cases (e.g., "coffee martini").
Profiling reveals that regularization effectively corrects outliers but
may also shift already well-positioned Gaussians, slightly degrading
quality. For short, robustness of our method against point tracking
error stems from several design choices: 1) Point tracker provides
accurate pixel trajectories in most cases. 2) PWI-LS (Sec. 4.3) miti-
gates individual pixel tracking errors by computing transparency-
weighted averages. 3) Multi-view triangulation (Sec. 4.4) corrects
trajectory errors by averaging results from multiple viewpoints. 4)

Median filtering (Sec.4.5.1) and propagation (Sec.4.5.2) handle severe
trajectory errors by replacing incorrect trajectories with neighbor-
ing Gaussians. 5) The refinement stage (Sec. 4.6) further optimizes
Gaussian positions, enhancing final accuracy.

5.6 Comparison of Parallel Performance

Table 2 compares parallel performance across different GPU set-
tings. TrackerSplat achieves higher throughput in most settings.
Our parallel framework can also improve the throughput of exist-
ing methods in multi-GPU environments. Baselines are generally
slower due to the computational demands of their regularization
terms or deformation fields. In contrast, although includes addi-
tional tracking stages, our method benefits from accurately aligned
Gaussians before training, eliminating the need for complex regu-
larization or deformation fields, and thus improving reconstruction
throughput. Dynamic3DGS dataset contains more views (27) but
at a lower resolution (only 640x360). In this dataset, the increased
number of views introduces additional overhead in the point track-
ing stage. Furthermore, since all methods perform the same number
of training/refinement iterations (1,000), the overhead from tracking
outweighs the performance gains obtained from simplified training.
As a result, our method shows comparatively lower throughput
than baselines on this dataset.

6 Limitations and Future Work

Small or thin objects. Point trackers often miss subtle motions
in small or thin objects (e.g., human hands or fingers shown in
Figure 6), leading to blurred or missing details.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

8 « Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu

Table 2. Average throughput comparison (seconds per frame) between Track-
erSplat and baselines under different GPU parallelism settings (1, 2, 4, and
8 GPUs). Our method achieves the highest throughput in most cases. We
also separately report the runtime of the tracking stages (point tracking
and motion compensation) and the refinement stage.

Method GPUs ‘ Dy.3DGS MeetRoom st-nerf N3DV
Parallel ST-4DGS 1 217.8 344.7 361.9 464.2
Parallel 4DGS 1 52.3 84.9 109.9 168.0
Parallel Dyn.3DGS 1 31.7 42.1 72.1 1233
Parallel HiCoM 1 13.1 26.9 54.1 119.0
Ours (total) 1 13.0 20.1 513 109.3
Ours (track+refine) 1 5.3+7.6 3.3+16.9 6.3+45.1 10.0+99.3
Parallel ST-4DGS 2 108.9 172.3 181.0 232.1
Parallel 4DGS 2 26.1 42.4 54.9 84.0
Parallel Dyn.3DGS 2 15.8 21.1 36.1 61.6
Parallel HiCoM 2 6.6 13.4 27.0 59.5
Ours (total) 2 7.1 10.7 26.6 55.5
Ours (track+refine) 2 3.9+3.8 2.3+8.4 4.1+22.5 5.9+49.6
Parallel ST-4DGS 4 54.4 86.2 90.5 116.0
Parallel 4DGS 4 13.1 21.2 27.5 42.0
Parallel Dyn.3DGS 4 7.9 10.5 18.0 30.8
Parallel HiCoM 4 3.3 6.7 14.8 29.7
Ours (total) 4 5.2 6.0 13.5 28.1
Ours (track+refine) 4 3.3+1.9 1.7+4.2 2.2+11.3 3.3+24.8
Parallel ST-4DGS 8 27.2 43.1 45.2 58.0
Parallel 4DGS 8 6.5 10.6 13.7 21.0
Parallel Dyn.3DGS 8 4.0 5.3 9.0 15.4
Parallel HiCoM 8 1.6 34 74 149
Ours (total) 8 3.4 3.4 7.1 14.7
Ours (track+refine) 8 2.4+1.0 1.3+2.1 1.5+45.6 2.3+124

Jittering artifacts. We observe temporal jitter (see the supple-
mentary video) from two sources: 1) tracking errors, especially in
low-texture regions where correspondence is ambiguous; although
Motion Regularization (Sec.4.5) and Refinement (Sec.4.6) mitigate
these issues, they do not eliminate them; and 2) spatiotemporal
inconsistencies of the 3DGS representation under noisy video data
[Yun et al. 2025].

Accumulated errors. While the refinement step can correct some
errors from earlier frames, it is not sufficiently robust. As a result,
inaccuracies may accumulate over time, and errors in the first frame
can propagate to subsequent frames, especially in challenging cases
with limited training views or complex scenes.

Occlusions. Typical point tracking methods establish trajectories
by matching pixels in subsequent frames with those in the first input
frame. Therefore, if an object is fully occluded in the first frame and
becomes visible later in a clip, point tracker may fail to estimate its
trajectory correctly, causing incomplete or missing reconstructions.
Potential Solutions. Recent studies [Duan et al. 2024; Sun et al.
2024] propose techniques that dynamically remove faded Gaus-
sians and add new ones in regions with high gradients, potentially
addressing these limitations. As these methods do not inherently
maintain consistent Gaussian trajectories across frames, integrating
such techniques with TrackerSplat would require additional mech-
anisms to match newly added Gaussians to existing trajectories.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Moreover, error decomposition for 3DGS [Yun et al. 2025] directly
targets spatiotemporal inconsistency and could be incorporated
into our refinement stage. Exploring this integration represents a
promising direction for future research.

7 Conclusion

We presented TrackerSplat, a robust and scalable approach for dy-
namic scene reconstruction using 3DGS. TrackerSplat integrates
off-the-shelf point tracker to extract pixel trajectories, and trian-
gulates them across views to update Gaussians before refinement.
This design enables TrackerSplat to effectively manage large inter-
frame motions, substantially improving reconstruction throughput
in multi-GPU environments while maintaining high visual quality.
Evaluation results on real-world dynamic scenes demonstrate the
effectiveness and scalability of TrackerSplat, paving the way toward
real-time dynamic scene reconstruction.

Acknowledgments

This research is supported by an NSERC Discovery Grant and a
MITACS Accelerate Cluster Grant.

References

Jad Abou-Chakra, Krishan Rana, Feras Dayoub, and Niko Suenderhauf. 2024. Physi-
cally Embodied Gaussian Splatting: A Visually Learnt and Physically Grounded 3D
Representation for Robotics. In 8th Annual Conference on Robot Learning.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao
Carreira, and Andrew Zisserman. 2023. TAPIR: Tracking Any Point with Per-Frame
Initialization and Temporal Refinement. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 10061-10072.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan
Chen. 2024. 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis
for Dynamic Scenes. In ACM SIGGRAPH 2024 Conference Papers (SSIGGRAPH °24).
1-11.

Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding,
Danfei Xu, Boris Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang,
and Yue Wang. 2024. InstantSplat: Unbounded Sparse-view Pose-free Gaussian
Splatting in 40 Seconds. doi:10.48550/ARXIV.2403.20309

Qiankun Gao, Jiarui Meng, Chengxiang Wen, Jie Chen, and Jian Zhang. 2024. HiCoM:
Hierarchical Coherent Motion for Dynamic Streamable Scenes with 3D Gaussian
Splatting. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 201.

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and
Christian Rupprecht. 2024. CoTracker3: Simpler and Better Point Tracking by
Pseudo-Labelling Real Videos. doi:10.48550/ARXIV.2410.11831

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and
Christian Rupprecht. 2025. CoTracker: It Is Better to Track Together. In Computer
Vision — ECCV 2024, Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Giil Varol (Eds.). 18-35.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions
on Graphics 42, 4 (2023), 139:1-139:14.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. 2024. Dense Optical Tracking:
Connecting the Dots. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 19187-19197.

Jiahui Lei, Yijia Weng, Adam W. Harley, Leonidas Guibas, and Kostas Daniilidis. 2025.
MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Degqi Li, Shi-Sheng Huang, Zhiyuan Lu, Xinran Duan, and Hua Huang. 2024b. ST-4DGS:
Spatial-Temporally Consistent 4D Gaussian Splatting for Efficient Dynamic Scene
Rendering. In ACM SIGGRAPH 2024 Conference Papers (SIGGRAPH °24). 1-11.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. 2022a. Streaming
Radiance Fields for 3D Video Synthesis. Advances in Neural Information Processing
Systems 35 (2022), 13485-13498.

Tianye Li, Mira Slavcheva, Michael Zollhéfer, Simon Green, Christoph Lassner, Changil
Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe,

https://doi.org/10.48550/ARXIV.2403.20309
https://doi.org/10.48550/ARXIV.2410.11831

TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D Gaussians Reconstruction « 9

and Zhaoyang Lv. 2022b. Neural 3D Video Synthesis From Multi-View Video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5521-5531.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. 2024a. Spacetime Gaussian Feature Splatting
for Real-Time Dynamic View Synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 8508-8520.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. 2024. Gaussian-Flow: 4D Reconstruc-
tion with Dynamic 3D Gaussian Particle. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 21136-21145.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. 2024. Dynamic
3D Gaussians: Tracking by Persistent Dynamic View Synthesis. In 3DV.

Jenny Seidenschwarz, Qunjie Zhou, Bardienus Duisterhof, Deva Ramanan, and Laura
Leal-Taixé. 2025. DynOMo: Online Point Tracking by Dynamic Online Monocular
Gaussian Reconstruction. arXiv:2409.02104 [cs] doi:10.48550/arXiv.2409.02104

Colton Stearns, Adam Harley, Mikaela Uy, Florian Dubost, Federico Tombari, Gordon
Wetzstein, and Leonidas Guibas. 2024. Dynamic Gaussian Marbles for Novel View
Synthesis of Casual Monocular Videos. In SIGGRAPH Asia 2024 Conference Papers.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 2024.
3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-
Realistic Free-Viewpoint Videos. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 20675-20685.

Qianqgian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander
Holynski, and Noah Snavely. 2023. Tracking Everything Everywhere All at Once.

In Proceedings of the IEEE/CVF International Conference on Computer Vision. 19795—
19806.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu,
Qi Tian, and Xinggang Wang. 2024. 4D Gaussian Splatting for Real-Time Dynamic
Scene Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 20310-20320.

Zhen Xu, Yinghao Xu, Zhiyuan Yu, Sida Peng, Jiaming Sun, Hujun Bao, and Xiaowei
Zhou. 2024. Representing Long Volumetric Video with Temporal Gaussian Hierarchy.
ACM Trans. Graph. 43, 6 (2024), 171:1-171:18.

Youngsik Yun, Jeongmin Bae, Hyunseung Son, Seoha Kim, Hahyun Lee, Gun Bang, and
Youngjung Uh. 2025. Compensating Spatiotemporally Inconsistent Observations for
Online Dynamic 3D Gaussian Splatting. In ACM SIGGRAPH 2025 Conference Papers
(Siggraph °25).

Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fugiang Zhao, Yanshun Zhang, Minye Wu,
Yingliang Zhang, Lan Xu, and Jingyi Yu. 2021. Editable Free-Viewpoint Video
Using a Layered Neural Representation. ACM Transactions on Graphics 40, 4 (2021),
149:1-149:18.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan
Yang. 2024. DrivingGaussian: Composite Gaussian Splatting for Surrounding Dy-
namic Autonomous Driving Scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 21634-21643.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

https://arxiv.org/abs/2409.02104
https://doi.org/10.48550/arXiv.2409.02104

10 « Daheng Yin, Isaac Ding, Yili Jin, Jianxin Shi, and Jiangchuan Liu

—— ours —— ours (w/o reg) —— Parallel ST-4DGS —— Parallel 4DGS —— Parallel Dynamic3DGS —— Parallel HiCoM
36.6 1 35.5 38.7 9
33.94 33.7 1 36.5 1
%? !
° 31.2 4 31.9 34.3 4
=4
wn
4
28.5 30.1 32.14
25.81 283 1 200
0.975 : : 0.979]
0.945
= 4
2 0.915 0.963
%]
0.885 0.955
1 0.855 0.947 4
10330 0.090 0.084 {
0.258 1 0.074 0.069
g ~| 0-186 1 0.058 1 / 0.054
=
0.114 0.042 0.039 1
0.042 4~ 0.026 0.024
25 75 125 25 75 125 25 75 125 25 75 125 25 75 125 15 a5 75
Frame Index Frame Index Frame Index Frame Index Frame Index Frame Index
(a) “basketball” (b) “boxes” (c) “football” (d) “juggle” (e) “softball” (f) “taekwondo”
3959 323
363, 312 35.5 1 36.0 WWWW
% \ W
2 33.14 32.84 33.3
nz: 30.1 Oy ouk
L mw"" et P W ﬁ‘k"\\‘fﬂ \\'\mw"f\ \ | ,Nw«"‘““‘”w“;w_,w/
29.91 29.0 o ! 30.1 30.6 4 1
M
26.7 A 27.9 27.4 4 27.9 W
0.978 09851 0.949 0.973 0073]
0.969 0.9547 0.942 0.9541 0.962 1 0.963 1
E 0.960 4 0.923 0.935 0.936 w*mw»h*”'w,wwv% ‘ 0.951 1 0.953
0.951 4 0.8927 0.928 0.918 4 0.940 0.943 A o
0.942 1 0.861 0.921 0.900 A 0.929 4 0.933 4
0.107 0.244 0.108 0.118 0.119 4 0.089 {
0.090 01907 0.098 0.097 0.098 1 0.074 1
£ 0,073 1 0.136 1 0.088 0.076 0.077 4 0.059 1
5
0.056 0.082 10,078 0.055 11/ 0.056 1 0.044 1
0.039 1 0.028 4 0.068 0.034 0.035 7 0.029 4
10 30 50 70 10 30 50 50 150 250 50 150 250 50 150 250 50 150 250
Frame Index Frame Index Frame Index Frame Index Frame Index Frame Index
(g) “walking” (h) “boxing” (i) “coffee martini” (j) “discussion” (k) “step in” () “trimming”

Fig. 5. Average visual quality (PSNR T/ SSIM T/ LPIPs |) over long-video sequences using our parallel pipeline with 8 GPUs (long-video experiments). Our
method achieves higher and more stable visual quality than baselines in most cases, demonstrating its robustness. Lines ending prematurely for 4DGS and
ST-4DGS indicate training failures due to GPU memory overflow (exceeding the 40GB limit of the A100 GPU) or numerical instabilities (NaN gradients).
Corresponding rendered videos are provided in the supplementary material.

SA Conference Papers *25, December 15-18, 2025, Hong Kong, Hong Kong.

TrackerSplat: Exploiting Point Tracking for Fast and Robust Dynamic 3D Gaussians Reconstruction « 11

— L ol =

(a) Ground Truth (b) Ours (c) Parallel HiCoM (d) Parallel Dynamic 3DGS (e) Parallel 4DGS

Fig. 6. Qualitative comparison of rendered results from the final frame of representative 9-frame clips processed in parallel using 8 GPUs (short-clip
experiments). Our method generates fewer artifacts and better preserves visual details compared to baselines, particularly in highly dynamic regions.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

	Abstract
	1 Introduction
	2 Related Work
	2.1 3D Gaussian Splatting for Dynamic Scenes
	2.2 Point Tracking

	3 Preliminaries
	3.1 Mathamatical Reperesentation of 3D Gaussians
	3.2 Integration of Point Tracking

	4 Method
	4.1 Overview
	4.2 Definition of Gaussian Motion
	4.3 Parallel Weighted Incremental Least Squares (PWI-LS)
	4.4 Update Gaussians from Multi-view Observations
	4.5 Motion Regularization
	4.6 Refinement
	4.7 Parallel Pipeline

	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Baseline and Ablation
	5.4 Comparison of Visual Quality
	5.5 Ablation Study Results
	5.6 Comparison of Parallel Performance

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

